Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice.

نویسندگان

  • Kate T Murphy
  • Vera Cobani
  • James G Ryall
  • Chikwendu Ibebunjo
  • Gordon S Lynch
چکیده

Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.

Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lu...

متن کامل

Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition

The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse ...

متن کامل

Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear.

Anterior cruciate ligament (ACL) tears are among the most frequent knee injuries in sports medicine, with tear rates in the US up to 250,000 per year. Many patients who suffer from ACL tears have persistent atrophy and weakness even after considerable rehabilitation. Myostatin is a cytokine that directly induces muscle atrophy, and previous studies rodent models and patients have demonstrated a...

متن کامل

Attenuation of skeletal muscle atrophy via protease inhibition.

Skeletal muscle atrophy in response to a number of muscle wasting conditions, including disuse, involves the induction of increased protein breakdown, decreased protein synthesis, and likely a variable component of apoptosis. The increased activation of specific proteases in the atrophy process presents a number of potential therapeutic targets to reduce muscle atrophy via protease inhibition. ...

متن کامل

Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disorder that causes progressive muscle atrophy and weakness. Using adeno-associated virus-mediated gene transfer, we evaluated the potential to improve skeletal muscle weakness via systemic, postnatal inhibition of either myostatin or all signaling via the activin receptor type IIB (ActRIIB). After demonstrating elevated p-SMAD3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 110 4  شماره 

صفحات  -

تاریخ انتشار 2011